Mathematical Analysis of a Nonlinear Parabolic Equation Arising in the Modelling of Non-Newtonian Flows
نویسندگان
چکیده
The mathematical properties of a nonlinear parabolic equation arising in the modelling of non-newtonian flows are investigated. The peculiarity of this equation is that it may degenerate into a hyperbolic equation (in fact a linear advection equation). Depending on the initial data, at least two situations can be encountered: the equation may have a unique solution in a convenient class, or it may have infinitely many solutions.
منابع مشابه
Mathematical modelling of Sisko fluid flow through a stenosed artery
In the present study, the nonlinear model of non-Newtonian blood flow in cosine-shape stenosed elastic artery is numerically examined. The model is carried out for axisymmetric, two-dimensional and fully developed blood flow. The vessel wall is assumed to be have time-dependent radius that is important factor for study of blood flow. The cosine-shape stenosis convert to rigid artery by using a ...
متن کاملAPPLICATION OF HPM AND HAM TO THE FIRST FORM OF BLASIUS EQUATION
In this work, the Blasius equation is studied. Homotopy perturbation method (HPM) and homotopy analysis method (HAM) are applied to obtain its solution. Comparison with variational iteration method (VIM) is made to highlight the significant features of employed methods and their capability of handling nonlinear problems. The outcome shows the success of (HPM) and (HAM) for solving nonlinear pro...
متن کاملNumerical Simulation of Non-Newtonian Inelastic Flows in Channel based on Artificial Compressibility Method
In this study, inelastic constitutive modelling is considered for the simulation of shear-thinning fluids through a circular channel. Numerical solutions are presented for power-law inelastic model, considering axisymmetric Poiseuille flow through a channel. The numerical simulation of such fluid is performed by using the Galerkin finite element approach based on artificial compression method (...
متن کاملAn Efficient Numerical Method to Solve the Boundary Layer Flow of an Eyring-Powell Non-Newtonian Fluid
In this paper, the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linearly stretching sheet is solved using the combination of the quasilinearization method and the Fractional order of Rational Chebyshev function (FRC) collocation method on a semi-infinite domain. The quasilinearization method converts the equation into a sequence of linear equations then, using the FRC coll...
متن کاملAttractors for a Non-linear Parabolic Equation Modelling Suspension Flows
In this paper we prove the existence of a global attractor with respect to the weak topology of a suitable Banach space for a parabolic scalar differential equation describing a non-Newtonian flow. More precisely, we study a model proposed by Hébraud and Lequeux for concentrated suspensions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 37 شماره
صفحات -
تاریخ انتشار 2005